jueves, 1 de mayo de 2014

TIPOS DE MOTORES

MOTOR ASINCRONOS
Los motores asíncronos o de inducción son un tipo de motor de corriente alterna en el que la corriente eléctrica, en el rotor, necesaria para producir torsión es inducida por inducción electromagnética del campo magnético de la bobina del estátor. Por lo tanto un motor de inducción no requiere una commutación mecánica aparte de su misma exitación o para todo o parte de la energía transferida del estátor al rotor, como en los universales, DC y motores grandes síncronos. El primer prototipo de motor eléctrico capaz de funcionar con corriente alterna fue desarrollado y construido por el ingeniero Nikola Tesla y presentado en el American Institute of Electrical Engineers (en español, Instituto Americano de Ingenieros Eléctricos, actualmente IEEE) en 1888.
El motor asíncrono trifásico está formado por un rotor, que puede ser de dos tipos: a) de jaula de ardilla; b) bobinado, y un estátor, en el que se encuentran las bobinas inductoras. Estas bobinas son trifásicas y están desfasadas entre sí 120º en el espacio. Según el Teorema de Ferraris, cuando por estas bobinas circula un sistema de corrientes trifásicas equilibradas, cuyo desfase en el tiempo es también de 120º, se induce un campo magnético giratorio que envuelve al rotor. Este campo magnético variable va a inducir una tensión en el rotor según la Ley de inducción de Faraday: La diferencia entre el motor a inducción y el motor universal es que en el motor a inducción el devanado del rotor no está conectado al circuito de excitación del motor sino que está eléctricamente aislado. Tiene barras de conducción en todo su largo, incrustadas en ranuras a distancias uniformes alrededor de la periferia. Las barras están conectadas con anillos (en cortocircuito como dicen los electricistas) a cada extremidad del rotor. Están soldadas a las extremidades de las barras. Este ensamblado se parece a las pequeñas jaulas rotativas para ejercitar a mascotas como hamsters y por eso a veces se llama "jaula de ardillas", y los motores de inducción se llaman motores de jaula de ardilla.




 
Los motores sincrónicos son naturalmente motores de velocidad constante. Operan en sincronismo con la línea de frecuencia y comúnmente se los utiliza donde se necesita una velocidad constante. El motor sincrónico es un motor eléctrico accionado por corriente alterna que consta de dos componentes básicos: un estator y un rotor. Típicamente, un capacitor conectado a una bobina del motor, es necesario para la rotación en la dirección apropiada. (No se necesitan capacitores para los modelos UDS que utilizan una bobina simple con un diente de engranaje interno para determinar la dirección). El estator fijo exterior contiene bobinas de cobre que se suministran con una corriente alterna para producir un campo magnético giratorio. El rotor magnetizado está sujeto al eje de salida y crea una fuerza de torsión debido al campo giratorio del estator. La velocidad de un motor sincrónico se determina por el número de pares de polos y es una proporción de la frecuencia de entrada (línea). Al igual que nuestros motores paso a paso, nuestro motor síncrono puede ofrecer soluciones de movimiento tanto para aplicaciones rotacionales como para lineales.


















TIPOS DE ROTORES

Tipos de rotores

Existen varios tipos de estos elementos, pero aquí solamente vamos a tratar los que son más usados en la industria; es decir, los rotores para motores asíncronos de corriente alterna.

Rotor de jaula de ardilla simple.

rotor de jaula simple

En el dibujo se puede observar unos círculos negros, éstos representan las ranuras del rotor donde va introducido el bobinado. Existen varios tipos de ranuras, de ahí que existan varios tipos de rotores.
El rotor representado es de jaula de ardilla simple.
Este tipo de rotor es el usado para motores pequeños, en cuyo arranque la intensidad nominal supera 6 ó 8 veces a la intensidad nominal del motor. Soporta mal los picos de cargas. Esta siendo sustituido por los rotores de jaula de ardilla doble en motores de potencia media. Su par de arranque no supera el 140 % del normal.

Rotor de jaula de ardilla doble.

rotor de jaula doble

En este otro dibujo, observáis que la ranura es doble, por este motivo tiene el nombre de jaula de ardilla doble. Las dos ranuras están separadas físicamente, aunque en el dibujo no se observe.
Este tipo de rotor tiene una intensidad de arranque de 3 ó 5 veces la intensidad nominal, y su par de arranque puede ser de 230 % la normal. Éstas características hacen que este tipo de rotor sea muy interesante frente al rotor de jaula de ardilla simple. Es el más empleado en la actualidad, soporta bien las sobrecargas sin necesidad de disminuir la velocidad, lo cual le otorga mejor estabilidad.

Rotor con ranura profunda.

rotor de ranura profunda

El tipo de rotor que se ve en el dibujo es una variante del rotor de jaula de ardilla simple, pero se le denomina rotor de ranura profunda. Sus características vienen a ser iguales a la del rotor de jaula simple. Es usado para motores de baja potencia que necesitan realizan continuos arranques y paradas.

Rotor de anillos rozantes.

Se denominan rotores de anillos rozantes porque cada extremo del bobinado está conectado con un anillo situado en el eje del rotor. Las fases del bobinado salen al exterior por medio de unas escobillas que rozan en los anillos. Conectando unas resistencias externas a las escobillas se consigue aumentar la resistencia rotórica, de esta forma, se logra variar el par de arranque, que puede ser, dependiendo de dichas resistencias externas, del 150 % y el 250 % del par normal. La intensidad nominal no supera las 2 veces la intensidad nominal del motor.


Motor monofásico.

Este tipo de motor es muy utilizado en electrodomésticos porque pueden funcionar con redes monofásicas algo que ocurre con nuestras viviendas.
En los motores monofásicos no resulta sencillo iniciar el campo giratorio, por lo cual, se tiene que usar algún elemento auxiliar. Dependiendo del método empleado en el arranque, podemos distinguir dos grandes grupos de motores monofásicos:

Motor monofásico de inducción.

Su funcionamiento es el mismo que el de los motores asíncronos de inducción. Dentro de este primer grupo disponemos de los siguientes motores:

1. De polos auxiliares o también llamados de fase partida.
2. Con condensador.
3. Con espira en cortocircuito o también llamados de polos partidos.

Motor monofásico de colector.

Son similares a los motores de corriente continua respecto a su funcionamiento. Existen dos clases de estos motores:

1. Universales.
2. De repulsión.

Motor monofásico de fase partida.

Este tipo de motor tiene dos devanados bien diferenciados, un devanado principal y otro devanado auxiliar. El devanado auxiliar es el que provoca el arranque del motor, gracias a que desfasa un flujo magnético respecto al flujo del devanado principal, de esta manera, logra tener dos fases en el momento del arranque.
Al tener el devanado auxiliar la corriente desfasada respecto a la corriente principal, se genera un campo magnético que facilita el giro del rotor. Cuando la velocidad del giro del rotor acelera el par de motor aumenta. Cuando dicha velocidad está próxima al sincronismo, se logran alcanzar un par de motor tan elevado como en un motor trifásico, o casi. Cuando la velocidad alcanza un 75 % de sincronismo, el devanado auxiliar se desconecta gracias a un interruptor centrífugo que llevan incorporados estos motores de serie, lo cual hace que el motor solo funcione con el devanado principal.
Este tipo de motor dispone de un rotor de jaula de ardilla como los utilizados en los motores trifásicos.
El par de motor de éstos motores oscila entre 1500 y 3000 r.p.m., dependiendo si el motor es de 2 ó 4 polos, teniendo unas tensiones de 125 y 220 V. La velocidad es prácticamente constante. Para invertir el giro del motor se intercambian los cables de uno solo de los devanados (principal o auxiliar), algo que se puede realizar facilmente en la caja de conexiones o bornes que viene de serie con el motor. 



Motor bifasico


Motores trifasicos
 
Motor de arranque auxiliar bobinado
 
Motor con arranque auxiliar bobinado y condensador
 
Motor de c.c.
FUNCIONAMIENTO.
En general, los motores de corriente continua son similares en su construcción a los generadores. De hecho podrían describirse como generadores que funcionan al revés. Cuando la corriente pasa a través del rotor de un motor de corriente continua, se genera un par de fuerzas por la reacción magnética, y el rotor gira. La acción del conmutador y de las conexiones de las bobinas del campo de los motores son exactamente las mismas que usan los generadores. La revolución del rotor induce un voltaje en las bobinas de ésta. Este voltaje es opuesto en la dirección al voltaje exterior que se aplica a el rotor, y de ahí que se conozca como voltaje inducido o fuerza contraelectromotriz.
Cuando el motor gira más rápido, el voltaje inducido aumenta hasta que es casi igual al aplicado. La corriente entonces es pequeña, y la velocidad del motor permanecerá constante siempre que el motor no esté bajo carga y tenga que realizar otro trabajo mecánico que no sea el requerido para mover el rotor. Bajo carga, el rotor gira más lentamente, reduciendo el voltaje inducido y permitiendo que fluya una corriente mayor en el rotor. El motor puede así recibir más potencia eléctrica de la fuente, suministrándola y haciendo más trabajo mecánico.
Debido a que la velocidad de rotación controla el flujo de la corriente en el rotor, deben usarse aparatos especiales para arrancar los motores de corriente continua. Cuando el rotor está parada, ésta no tiene realmente resistencia, y si se aplica el voltaje de funcionamiento normal, se producirá una gran corriente, que podría dañar el conmutador y las bobinas del rotor. El medio normal de prevenir estos daños es el uso de una resistencia de encendido conectada en serie a el rotor, para disminuir la corriente antes de que el motor consiga desarrollar el voltaje inducido adecuado. Cuando el motor acelera, la resistencia se reduce gradualmente, tanto de forma manual como automática.




La velocidad a la que funciona un motor depende de la intensidad del campo magnético que actúa sobre el rotor, así como de la corriente de ésta. Cuanto más fuerte es el campo, más bajo es el grado de rotación necesario para generar un voltaje inducido lo bastante grande como para contrarrestar el voltaje aplicado. Por esta razón, la velocidad de los motores de corriente continua puede controlarse mediante la variación de la corriente del campo.


Los carbones cierran el circuito de la fuente con las dos delgas y la espira conectada a ellas, de esta forma circula corriente por las espiras, como esto ocurre dentro de un campo magnético, aparecen fuerzas sobre las espiras y el rotor comienza a girar.


Como la espira gira dentro del campo lo hace cortando líneas de campo, lo mismo ocurre con las fuerzas, pero esto induce una fuerza electromotriz que se opone a la de la fuente y se denomina fuerza contra electromotriz (fcem) según la ley de Lenz.

Motor serie

Motor eléctrico serie.
El motor serie o motor de excitación en serie, es un tipo de motor eléctrico de corriente continua en el cual el inducido y el devanado inductor o de excitación van conectados en serie, El voltaje aplicado es constante, mientras que el campo de excitación aumenta con la carga, puesto que la corriente es la misma corriente de excitación. El flujo aumenta en proporción a la corriente en la armadura, como el flujo crece con la carga, la velocidad cae a medida que aumenta esa carga.
Las principales características de este motor son:
- Se embala cuando funciona en vacío, debido a que la velocidad de un motor de corriente continua aumenta al disminuir el flujo inductor y, en el motor serie, este disminuye al aumentar la velocidad, puesto que la intensidad en el inductor es la misma que en el inducido.
- La potencia es casi constante a cualquier velocidad.
- Le afectan poco la variaciones bruscas de la tensión de alimentación, ya que un aumento de esta provoca un aumento de la intensidad y, por lo tanto, del flujo y de la fuerza contraelectromotriz, estabilizándose la intensidad absorbida.

 
  Motor Excitación Paralelo 
 


Motor de excitación compuesta o compound.

motor corriente continua de excitación compuesta

El devanado es dividido en dos partes, una está conectada en serie con el inducido y la otra en paralelo, como se puede ver con el dibujo. Se utilizan en los casos de elevación como pueden ser montacargas y ascensores. Teniendo el devanado de excitación en serie conseguimos evitar el embalamiento del motor al ser disminuido el flujo, el comportamiento sería similar a una conexión en shunt cuando está en vacio. Con carga, el devanado en serie hace que el flujo aumente, de este modo la velocidad disminuye, no de la misma manera que si hubiesemos conectado solamente en serie.

Motor de excitación independiente.

motor corriente continua de excitación independiente

Como podemos observar en el dibujo, los dos devanados son alimentados con fuentes diferentes. Tiene las mismas ventajas que un motor conectado en shunt, pero con más posibilidades de regular su velocidad.

Conexión de bornes.

En la caja de bornes del motor disponemos de unas bornas numeradas alfabéticamente, que corresponden con los diferentes conexionados que podemos hacer en el motor.
Para el inducido serán la A-B.
Para el devanado de excitación en shunt o derivación serán C-D.
Para el devanado de excitación en serie serán E-F.
Para el devanado de excitación independiente serán J-K.
Para el devanado de compensación y de conmutación serán G-H.


 
 


No hay comentarios:

Publicar un comentario